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Abstract 
In the paper hereby, a numerical (panel) method is applied to analyze steady two-

dimensional flow of ideal gas around an airfoil. Initially, the airfoil is divided into a finite number of 

panels. Then the panels are replaced by doublets with constant strength. In addition, a wake panel is 

added to fulfill Kutta condition at the airfoil trailing edge. 

In order to implement this, a numerical realization is developed and built by means of Tiny 

C Compiler. To work out a solution to the linear non-homogeneous algebraic system, direct schemes 

for lower-upper factorization / decomposition of matrix of coefficients were applied, namely Crout, 

Doolittle, and Cholesky. 

The obtained results are validated against exact solution and shown for various values of 

angle of attack and Reynolds number. 

 

 
 Introduction 
 

For couple of years, the personnel of Department of Aerospace Control 

Systems have been utilizing the Chinese Mugin-3 unmanned aerial vehicle, [1], 

Fig. 1. Unfortunately, the airplane is deficient in some important flying and 

maneuvering characteristics which are supposed to have been computed by the 

manufacturer. By reason of making up for the missing data, the proposed study 

aims at retrieving aerodynamic characteristics of Mugin-3M UAV wing airfoil, 

such as the static pressure coefficient. The initial data are airfoil geometry, 

Reynolds number, and angle of attack. The airfoil geometry was politely submitted 

to the author by a Mugin Ltd. correspondence clerk. 

The proposed study follows a computational algorithm thoroughly 

described by Katz and Plotkin in their famous textbook [2] and implemented 

further by a computational code developed in ForTran. In order that infringement 

of proprietary rights can be avoided, alternative source code has been developed in 
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C sticking rigidly to the same algorithm of computing the induced velocities and 

proposing an alternative for working out a solution to the linear algebraic system. 

 
 

Fig. 1. Mugin-3 3220 mm UAV V-tail platform frame kit, [1] 

 
 Method 

A few major stages during solution workflow are outlined below. 

 

Discretization of geometry 
 

At first, the airfoil is divided into finite number of panels in accordance 

with what is depicted in Fig. 2. A circle is drawn with center placed at the chord 

middle and radii of half a chord. Copies of the radii are evenly distributed in a 

circular pattern around the center point so as to obtain the so-called polar array, [3]. 

Each copy of the radii intersects the circle at a point which is further connected to 

the mirror one across the abscissa by a vertical line (dash). Wherever a vertical line 

intersects the airfoil contour, the panel end point is defined. This method makes the 

panel end points close up (concentrate) in the vicinity of both leading and trailing 

edges where the flow parameters change intensively. 
 

 
 

Fig. 2. Dividing an airfoil into panels 
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Computation of influence coefficients 
 

A boundary condition imposed on the problem under consideration implies 

that normal flow component is not allowed through the airfoil contour. The normal 

velocity component at each collocation point Ci, Fig. 3, could be divided into a 

self-induced and a free-stream part, [2]. The former quantity is computed by 
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where up and vp denote induced velocities computed in a local (panel) coordinate 

system, x1, x2 denote panel end abscissas (z1 = z2 = 0), x, y denote collocation point 

coordinates. In Fig. 3, the local coordinate system (ξ, ζ), aligned along the panel j, 

is visible, so is the collocation point Ci (at panel middle). A nested loop is required 

to compute velocities induced at all collocation points by all panels, thus deriving a 

system of linear equations. The quantities up and vp must be remapped back to the 

global coordinate system (X, Z) prior to computing the influence coefficient 

(2)  ,ij iij
a u v n  

which is essentially an element of left-hand side of the system equations. The latter 

quantity (free stream) is a dot product of free stream velocity and normal vector in 

global coordinate system 

(3)  ,i iRHS U V   n  

which in turn belongs to the system right-hand side. 
 

 
 

Fig. 3. Airfoil of Mugin 3, 15% thickness, and wake panel, [2] 
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After computing the aforementioned quantities, following linear non-

homogenous system of equations is obtained: 

(4) 
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System (4) is augmented further by Kutta condition implying that circulation at the 

trailing edge should be zero. However, according to Fig. 3, the vortex strength at 

the trailing edge is found to be –Γ = μl – μN, [2], hence a wake panel is required to 

meet the condition requirements, i.e. 

(5)  1 0N W      

Equation (5) is added to the last row of system (4). In addition, a column is added 

to the matrix of coefficients denoting velocities generated by the wake panel (index 

W) at the collocation point (index i). The system is said to be well defined and 

stable in terms of numerical solution, [2]. 

 
Solving a linear algebraic system 

 

Having computed the influence coefficients, a non-homogenous linear 

algebraic system (4) is obtained in terms of doublet strength µ distribution along 

the airfoil contour. In the current study, a direct method of compact lower – upper 

(LU) factorization / decomposition of matrix A was employed to work out solution 

to the system (1). In general, there are three types of factorization thoroughly 

described in textbook [4]: 

 Doolittle if U matrix has 1s along its diagonal. In this case, the matrices 

elements might be solved for by means of following formulae: 
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 Crout if L matrix has 1s along its diagonal. For the matrices elements at 

step k it follows: 

(7) 
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 Cholesky if U = L
T
 or L = U

T
 

(8) 

1

1

1
2

1

, 1, 2,..., 1

k

kj kp pj

p

kj

jj

k

kk kk kp

p

a l u

u j k
l

u a l











  

 





 

The Cholesky decomposition is solely applicable to a Hermitian (self-adjoint), 

positive-definite matrix. 

The basic concept of the LU decomposition is constructing lower and 

upper triangular matrices for the following equation to be true: 

(9) A LU LU b    

The aforementioned decomposition might be used to solve for the unknown vector 

Uµ = y first, [5], i.e. 

(10)  A L U L b  y   

Then, the obtained intermediate vector y is to be used to solve for the vector µ 

(11) U  y  

The LU factorization is only possible if inverted matrix exists, i.e. det(A) = 0 

(12) 
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https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
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Secondary quantities 
 

Having computed the doublet distribution along the airfoil, it is possible to 

work out values of some secondary quantities, [2], as follows: 

 Perturbation tangential velocity in terms of induced velocities 
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 Pressure coefficient 

(14) 
 

2

, 2
1

t t i
p i

Q q
C

Q






   

In formula (14), Qt∞ stands for the dot product of free stream velocity and panel i 

unit tangent vector. 

 
Source code description and results validation 

 

The source code was built by Tiny C Compiler, [6]. In Fig. 4, the header 

file included in the solution might be seen. Apart from the function prototypes, an 

alias of a structure is defined. The structure contains main geometric quantities of a 

panel. These include pointers to dynamically allocated arrays containing panel end 

points, normal and tangent vectors, and collocation point. The header file also 

contains a function-like macro IX(i, j) taking row and column indexes (i, j) as 

arguments. Throughout the source, one-dimensional arrays are solely used even in 

case of matrix of coefficients (left-hand side) of system (4). 

Briefly, the software work sequence is following. An array of type 

myPanel is dynamically allocated containing as many panels as necessary (function 

void *malloc). All fields within a single panel are initialized by means of a text file 

containing airfoil panels coordinates. For the airfoil to be divided according to 

algorithm depicted in Fig 2, using a CAD software is recommended, for instance 

AutoCAD. Then the algorithm proceeds to computing each panel geometrical 

quantities, function geom(). The next step consists of two nested loops intended to 

compute velocities at current collocation point induced by current panel, function 

influenceDueToDoublet(). As it was mentioned earlier, the collocation point is 

placed at the panel center. Having computed the influence coefficients, a method of 

working out a solution to the non-homogenous linear system is invoked, function 

Doolittle(), Crout(). Eventually, results are exported to an stdout device and all 

allocated structures and arrays are freed, function free(). 

Broadly speaking, the header file shown in Fig. 4 is self-explanatory. 
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#ifndef DEFS_H 

#define DEFS_H 

 

// number of panels 

#define I 80 

#define PI 4. * atan(1.) 

// Matrix dimension (includes wake) 

#define COLS (I+1) 

#define IX(i, j) (i) * COLS + j 

 

typedef float real; 

// All in global coordinates 

typedef struct panel { 

        real *x, *y;    // end panel points, [2] each 

        real *n, *t, S; // normal[2], tangent[2], area 

        real *c, *p     // collocation point[2], panel centroid[2] 

} myPanel; 

 

myPanel* createPanels(int N); 

int deletePanels(myPanel *foo, int N); 

real* make1Darray(int N); 

int delete1Darray(real *foo); 

int geom(myPanel *foo, char *type); 

void influenceDueToDoublet(myPanel *foo, real x, real y, int i, int j, 

real *u, real *v); 

real* Doolittle(int N, real *a, real *b); 

real* Crout(int N, real *a, real *b); 

real* Cholesky(int N, real *a, real *b); 

 

#endif // DEFS_H 

 

Fig. 4. A header file included in the developed software 

 

In order to estimate the program ability to work out a solution in advance, a 

validation case was carried out about an ideal flow around a cylinder, 2D. The 

cylinder had been previously divided into 80 panels. It is widely known that the 

distribution of coefficient of pressure along the cylinder surface might be estimated 

according to following formula, [7] 

(15) 
21 4sinpC    

where θ is a polar angle of which the coefficient Cp in (15) is solely dependent. 

Formula (15) is derived from Bernoulli’s equation for total energy conservation of 

ideal gas flow, i.e. in case of inviscid, incompressible, irrotational flow. 

In Fig. 5, the solution of system (4), i.e. doublet distribution, is shown, so 

is the static pressure coefficient distribution, Fig. 6, computed by means of formula 

(14). For this particular test case, α = 0 deg, Q∞ = 1, cylinder diameter (chord) = 1. 

Evidently, both numerical (14) and exact (15) solutions coincide, Fig. 6. The 

numerical solution does not include a zone of flow separation for an obvious 

reason, i.e. a boundary layer does not emerge in case of ideal gas flow. 
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Fig. 5. Doublet distribution, circle, α = 0 deg, Re = 66177 

 

 
 

Fig. 6. Static pressure coefficient, circle, α = 0 deg, Re = 66177 
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 Numerical results 
 

In Fig. 7, numerical solution of system (4) regarding Mugin wingfoil is 

shown. Test case details are outlined in the caption below the figure. 

 

 
 

Fig. 7. Numerical solution of (4), Mugin 72 panels, Crout LU, α = 10 deg, Re = 66177 

 

In Fig. 8, the static pressure coefficient is shown regarding the same test case. 
 

 
 

Fig. 8. Static pressure coefficient, Mugin 72 panels, α = 10 deg, Re = 66177 
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 Concluding notes 
 

Apart from static pressure coefficient, other secondary quantities might be 

computed, such as total lift and moment. Recalling the Kelvin’s theorem, the total 

lift might be computed by taking the wake doublet strength, obtained after solving 

system (4). Bearing in mind small initial quantities Q∞ = 1 m/s, ρ = 1.2 kg/m
3
 μW = 

–0.386 m
2
/s, l = 1 m, then, following Joukowski theorem L = –ρQ∞μWl = 0.465 N. 
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ПРИЛОЖЕНИЕ НА МЕТОДА НА ДИСКРЕТНИТЕ ДИПОЛИ  

С ПОСТОЯНА ИНТЕНЗИВНОСТ ЗА АНАЛИЗ НА СТАЦИОНАРНО 

ТЕЧЕНИЕ ОКОЛО КРИЛЕН ПРОФИЛ 

 
К. Методиев 

 
Резюме 

В настоящата статия е приложен числен (панелен) метод за анализ на 

двумерно течение на идеален газ около крилен профил. Отначало профилът 

беше разделен на краен брой панели. Впоследствие панелите бяха заменени 

от диполи с постоянна интензивност. Добавен беше и панел (следа) към из-

ходящия ръб на профила, за да се удовлетвори условието на Кута. 

За да се реализира този алгоритъм, числена реализация беше разра-

ботена и компилирана на Tiny C Compiler. За да се реши числено получената 

линейна нехомогенна система уравнения, беше приложен директен метод на 

LU-декомпозиция на матрицата коефициенти, а именно Crout, Doolittle, 

Cholesky. 

Получените резултати са валидирани с точно решение и показани за 

различни стойности на ъгъла на атака и числото на Рейнолдс. 


